COSMIC Functional Size of ARM
Assembly Programs

Ahmed Darwish and Hassan Soubra

The German University in Cairo (GUC), Egypt

Darwish and Soubra ©2020 IWSM-MENSURA 2020

Presentation
Agenda In this presentation, we:

1. Motivate our work, and choice of use
case.

2. Provide an overview about COSMIC and
ARM.

3. Describe the methodology.

4. Showcase our prototype.

5. Conclude.

Darwish and Soubra ©2020 IWSM-MENSURA 2020

Why COSMIC for Assembly languages?

e All languages, whether interpreted or
compiled, are bound to be represented in
some assembly language to be run by the
hardware.

e We can leverage this fact to build a
universal language-agnostic COSMIC
measurement tool.

e How? Just measure the assembly
language programs!

Darwish and Soubra ©2020

C source code (hello.c)

!

Preprocessor

!

Compiler

l

4

Assembly Code l We would like

v to measure
Assembler this!

:

Object code (hello.o) + libraries ‘

Executable (a.out or hello)

Courtesy of zentut.com

IWSM-MENSURA 2020

e ARM is a very big player in the semiconductor industry, licensing its chip designs to

manufacturers:
o It accounts for a third of the addressable market.
o ARM chips are used in 90% of chips in the mobile industry.
o 75% of vehicle infotainment and ADAS systems are ARM-based.
o Apple recently announced incorporating ARM designs into its computers.

O

Recently acquired by NVidial!

e ARM'’s architecture is RISC.

Darwish and Soubra ©2020 IWSM-MENSURA 2020

Presentation
Agenda In this presentation, we:

1. Motivate our work, and choice of use
case.

2. Provide an overview about COSMIC and
ARM.

3. Describe the methodology.

4. Showcase our prototype.

5. Conclude.

Darwish and Soubra ©2020 IWSM-MENSURA 2020

ARM Architecture

ARM processors come in 3 main flavours: Application, Real-Time, and Microcontroller.
Three variants of the ISA exist: A32, A64, T32.
31 registers present in the register file, of which 16 are user addressable.
A defining characteristic of the ISAs: a condition field which defines the state of the

conditional flags that must be present for the command to run, otherwise it is discarded

NOP.

il

2% 27 6 25

16 15 12 11 8%

Cona 0 I Opcooe mn Rd Operand 2

Cona 00000 IA Rd Rn Rs I'.001| Rm
Cona M1 Ignored by processor

Cond 0 L{pPjulew Rn Rd offse

Cond ot 1 FOOOOOOOOCOOOOOOXNX XXXX
Cona oo JPlulsIw Rn Regester Uist

offset

Darwish and Soubra ©2020

IWSM-MENSURA 2020

Data Processing
PSR Transfer

Multiply

Software Interrupt
Single Data Transfer
Undefined

Block Data Transfer

Branch

COSMIC Overview

e Methodology standard for quantifying By Bodiy
functional user requirements. (ISO 19761) '

e Focuses mainly on the transfer of data E
groups between the different functional Human
processes, and possibly a persistent =
storage.

e A functional process is initiated by a
triggering event from some functional user w R
causing a triggering entry of data into the

External
Appl(s)

App Being
measured

x
x

- ——————] - -
- —————— -

proceSS. Persistent
e Data movements are classified into Entries, Horage
Exits, Reads, and Writes.

D’Avanzo et al.: COSMIC functional measurement of
mobile applications and code size estimation

Darwish and Soubra ©2020 IWSM-MENSURA 2020

Stages of COSMIC

Measurement Sponsor Input = Definition of each piece of
Software Context Model ——s| £ /1a5€ 1
oftware Context Mode Measurement l—— Software to be measured and
Requirements = Strategy of the required measurement

1

Functional Requirements =

Generic Software Model =———>

Phase 2
Mapping
Phase

FUR in the form of the

— Generic Software

Model

Phase 3
Measurement
Phase

Functional size
—p Of the software
in units of CFP

COSMIC’s Measurement Manual ver. 4.0.2

Darwish and Soubra ©2020

IWSM-MENSURA 2020

Presentation
Agenda In this presentation, we:

1. Motivate our work, and choice of use
case.

2. Provide an overview about COSMIC and
ARM.

3. Describe the methodology.

4. Showcase our prototype.

5. Conclude.

Darwish and Soubra ©2020 IWSM-MENSURA 2020

The Measurement Strategy Phase

e The goal of our procedure is measuring the size of compiled programs.

e We consider each instruction to be a separate functional process, since we are working at the
hardware level of a computer.

e The Decoder part of the processor is our only functional user.

e The persistent storage consists of several components: the register file, caches,
co-processor register files, memory attached to the processor.

10
Darwish and Soubra ©2020 IWSM-MENSURA 2020

The Mapping Phase

e Triggering Event: a fetched program is decoded and the different parameters are retrieved.

e Triggering Entry: the condition field, since it is common for all instructions.

e Afterwards, the different parameters and signals necessary for the execution of the
instruction are passed to the functional process. All those are considered Entries.

e Any data exchange with the Persistent Storage mentioned before is considered our
Reads/Writes.

e No Exits!

11
Darwish and Soubra ©2020 IWSM-MENSURA 2020

The Mapping Phase

e The Abstract Instruction Model

void instruction(halfbyte conditionField, {boolean S},
T B
// Optional status register check
if(statusRegister [conditionBits| != conditionField)
return

paraml, param2,

// Details of the instruction go here

// Optional status register update
// (for arithmetic instructions only)
if(S = true)

updateStatusRegsiter ()

return ;

12
Darwish and Soubra ©2020 IWSM-MENSURA 2020

The ADC Example

void ADC(halfbyte conditionField , boolean S, int rd., int rn., int
Operand2){ + 5 Entries
if(statusRegister [conditionBits] != conditionField) + 1 Read
(optional)

return:
tmp a = RegisterFile|[rt]; +« 1 Read
RegisterFile[rd] = a + Operand2 + statusRegister [CarryFlag]|; +« 1
Write, 1 Read
if(S = true)

updateStatusRegister(): « 1 Write (optional)

return:

13
Darwish and Soubra ©2020 IWSM-MENSURA 2020

The PUSH Example

void PUSH(halfbyte conditionField, short reglist){ « 2 Entries
if(statusRegister [conditionBits] != conditionField) + 1 Read
return: (optional)

for i = 0 till 15:

if reglist[i] = 1:
Memory | address] = RegisterFile[i] « 1 Read,
1 Write (per register)
address = address + 4
RegisterFile [SP] = RegisterFile [SP] — 4xBitCount(reglist);+ 1 Read,
1 Write
return ;

14
Darwish and Soubra ©2020 IWSM-MENSURA 2020

Presentation
Agenda

Darwish and Soubra ©2020

In this presentation, we:

1. Motivate our work, and choice of use
case.

2. Provide an overview about COSMIC and
ARM.

3. Describe the methodology.

4. Showcase our prototype.

5. Conclude.

IWSM-MENSURA 2020

15

Automated Measurement Tool Prototype

A Python GUI tool for measuring the size of ARM programs.
Compatible with the output of objdump command from Linux.
Can include native C headers into the measurement.

00010460 <factorial>:

10460: e92d4800
10464: e28db004
10468: e24dd008
1046c: e50b0008
10470: e51b3008
10474: 3530000
10478: 1a000001
1047c: e3a03001
10480: ea000006€
10484: e51b3008
10488: e2433001
1048c: e1a00003
10490: ebfffff2
10494: el1la02000
10498: e51b3008
1049c: e0030293
104a0: el1la00003
104a4: e24bd004
104a8: e8bd8800

000104ac <main>:
104ac: e92d4800
104b0: e28db004

push
add
sub
str
ldr
cmp
bne
mov

1ldr
sub
mov
bl

mov
ldr
mul
mov
sub
pPop

push
add

{fp, 1r}

fp, sp, #4

sp, sp, #8

r0, [£fp, £#-8]

r3, [fp, #-8]
0

x3,

10484 <factorial+0x24>
3, 3

104a0 <factorial+0x40>
r3, [fp, #-8]

3. x3, F1

x0; =3

10460 <factorial>
22«20

3, [fp, $#-8]

3, 23y 22

0 “®3

sp, fp, #4

{fp, pc}

{fp, 1r}

fp, sp, #4

Darwish and Soubra ©2020

ARM COSMIC Measurement Tool X

Source File:

Browse

["Include native C headers

Measure CFPs

Save Analysis

| I

Save Measurement

16
IWSM-MENSURA 2020

OpeﬂV o) measurement_te:

otal CFP count = 871

Number of Entries = 457
Number of Reads = 227
Number of Writes = 187
Number of Exits = 0

CFP count per instruction type

'push': 79
'bl":i36
'pop': 64
"idr! s 256
'add': 152
'mov': 119
'cmp': 48
'bxeq': 30
‘bl 42
'bx': 24
'sub': 64
‘asrls 6
'asrs': 12
'ldrb': 8
'popne': 7
'strb': 8
'str': 48
'mul': 10
'bne': 8
'popeq': 19
"bIx!s: 6
Plain Text v Tab Width: 8 ~ Ln 1, Col 1

Darwish and Soubra ©2020

Source File:

Automated Measurement Tool Prototype

|/home/shiro-raven/Desktop/cosmic_tool/test ,txt

" Include native C headers

Measure CFPs

e B el 5 B

umber of Entries = 457
umber of Reads = 227
unber of Writes = 187
umber of Exits = 0

CFP count per instruction tupe

T P

‘ldr': 256

Save Analysis

Save Measurement

ARM COSMIC Measurement Tool

Brouse

Nl B C | G |

1 |hex name ops entries reads writes | exits

2 |e92d4008 push {r3,Ir} 2 2 2 0
3 |eb000020 bl 1034c <call_weak_fn> 2 0 1 0
4 |e8bd8008 pop {r3, pc} 2 2 2 0

5 |e52de004 push {ir} 2 1 1 0

6 |es59fe004 Idr Ir, [pc, #4] 4 2 1 0

[Mleosteooe [add i, pe. I 5 2 1 o
~ 8 |esbefoos Idr pc, [Ir, #8]! 4 2 1 0
9 |e28fc600 add |ip, pc, #0, 12 5 2 1 0
10 |e28ccal0 add ip, ip, #16, 20 5 2 1 0

11 |esSbcfd24 Idr pc, [ip, #3364]! 4 2 1 0
12 |e28fc600 add |ip, pc, #0, 12 5 2 1 0
13 |e28ccald add ip, ip, #16, 20 5 2 1 0

14 |eSbcfdic |Idr pc, [ip, #3356]! 4 2 1 0

IWSM-MENSURA 2020

17

Presentation
Agenda

Darwish and Soubra ©2020

In this presentation, we:

1. Motivate our work, and choice of use
case.

2. Provide an overview about COSMIC and
ARM.

3. Describe the methodology.

4. Showcase our prototype.

5. Conclude.

IWSM-MENSURA 2020

18

Conclusion

e Our goal in this work was to map an assembly language’s computational model as comprehensively as
possible to COSMIC's terminology, in order to measure programs in that language.

e We decided to choose ARM as the target language due to its popularity and significant share in the
market.

e We implemented our mappings as a simple prototype that takes as input C program/ARM assembly
program.

e Possible future work: 1. Applying our mapping to other assembly languages.

2. Studying how the size changes as a program is compiled.

19
Darwish and Soubra ©2020 IWSM-MENSURA 2020

Thank you!

Any Questions?

Reach out to us!

amfa.darwish.97@amail.com

hassan.soubra@quc.edu.eqg

mailto:amfa.darwish.97@gmail.com
mailto:hassan.soubra@guc.edu.eg

