COSMIC Functional Size of ARM Assembly Programs

Ahmed Darwish and Hassan Soubra

The German University in Cairo (GUC), Egypt

Darwish and Soubra ©2020

- 1. **Motivate** our work, and choice of use case.
- Provide an overview about COSMIC and ARM.
- 3. Describe the **methodology**.
- 4. Showcase our **prototype**.
- 5. Conclude.

Why COSMIC for Assembly languages?

- All languages, whether interpreted or compiled, are bound to be represented in some assembly language to be run by the hardware.
- We can leverage this fact to build a universal **language-agnostic** COSMIC measurement tool.
- How? Just measure the assembly language programs!

Why ARM?

- ARM is a very big player in the semiconductor industry, licensing its chip designs to manufacturers:
 - It accounts for a third of the addressable market.
 - ARM chips are used in 90% of chips in the mobile industry.
 - 75% of vehicle infotainment and ADAS systems are ARM-based.
 - Apple recently announced incorporating ARM designs into its computers.
 - Recently acquired by NVidia!
- ARM's architecture is RISC.

- 1. **Motivate** our work, and choice of use case.
- 2. Provide an **overview** about COSMIC and ARM.
- 3. Describe the **methodology**.
- 4. Showcase our **prototype**.
- 5. Conclude.

ARM Architecture

- ARM processors come in 3 main flavours: **Application**, **Real-Time**, and **Microcontroller**.
- Three variants of the ISA exist: A32, A64, T32.
- 31 registers present in the register file, of which 16 are user addressable.
- A defining characteristic of the ISAs: a condition field which defines the state of the conditional flags that must be present for the command to run, otherwise it is discarded NOP.

COSMIC Overview

- Methodology standard for quantifying functional user requirements. (ISO 19761)
- Focuses mainly on the transfer of **data** groups between the different functional processes, and possibly a persistent storage.
- A functional process is initiated by a triggering event from some functional user causing a triggering entry of data into the process.
- Data movements are classified into <u>Entries</u>, <u>Exits</u>, <u>Reads</u>, and <u>Writes</u>.

D'Avanzo et al.: COSMIC functional measurement of mobile applications and code size estimation

Stages of COSMIC

COSMIC's Measurement Manual ver. 4.0.2

Darwish and Soubra ©2020

- 1. **Motivate** our work, and choice of use case.
- Provide an overview about COSMIC and ARM.
- 3. Describe the **methodology**.
- 4. Showcase our **prototype**.
- 5. Conclude.

The Measurement Strategy Phase

- The goal of our procedure is measuring the size of compiled programs.
- We consider each instruction to be a separate functional process, since we are working at the hardware level of a computer.
- The <u>Decoder</u> part of the processor is our only functional user.
- The <u>persistent storage</u> consists of several components: the **register file**, **caches**, **co-processor register files**, **memory** attached to the processor.

The Mapping Phase

- **Triggering Event**: a fetched program is decoded and the different parameters are retrieved.
- **Triggering Entry**: the condition field, since it is common for all instructions.
- Afterwards, the different parameters and signals necessary for the execution of the instruction are passed to the functional process. All those are considered **Entries**.
- Any data exchange with the **Persistent Storage** mentioned before is considered our **Reads/Writes**.
- No Exits!

The Mapping Phase

• The Abstract Instruction Model

The ADC Example

tmp a = RegisterFile[rt]; ← 1 Read RegisterFile[rd] = a + Operand2 + statusRegister[CarryFlag]; ← 1 Write, 1 Read

if(S == true)
updateStatusRegister(); ← 1 Write (optional)

return;

The PUSH Example

- 1. **Motivate** our work, and choice of use case.
- Provide an overview about COSMIC and ARM.
- 3. Describe the **methodology**.
- 4. Showcase our prototype.
- 5. Conclude.

Automated Measurement Tool Prototype

- A **Python** GUI tool for measuring the **size** of ARM programs.
- Compatible with the output of *<u>objdump</u>* command from Linux.
- Can include native C headers into the measurement.

10460:	e92d4800	push	{fp, lr}
10464:	e28db004	add	fp, sp, #4
10468:	e24dd008	sub	sp, sp, #8
1046c:	e50b0008	str	r0, [fp, #-8]
10470:	e51b3008	ldr	r3, [fp, #-8]
10474:	e3530000	cmp	r3, #0
10478:	1a000001	bne	10484 <factorial+0x24></factorial+0x24>
1047c:	e3a03001	mov	r3, #1
10480:	ea000006	b	104a0 <factorial+0x40></factorial+0x40>
10484:	e51b3008	ldr	r3, [fp, #-8]
10488:	e2433001	sub	r3, r3, #1
1048c:	e1a00003	mov	r0, r3
10490:	ebfffff2	bl	10460 <factorial></factorial>
10494:	e1a02000	mov	r2, r0
10498:	e51b3008	ldr	r3, [fp, #-8]
1049c:	e0030293	mul	r3, r3, r2
104a0:	e1a00003	mov	r0, r3
104a4:	e24bd004	sub	sp, fp, #4
104a8:	e8bd8800	pop	{fp, pc}
000104ac <	main>:		
104ac:	e92d4800	push	{fp, lr}
104b0:	e28db004	add	fp, sp, #4

Browse
· · · · · · · · · · · · · · · · · · ·
4
]

Darwish and Soubra ©2020

Automated Measurement Tool Prototype

Open 👻 🖪	measurement_test.t ~/Desktop/cosmic_too	xt Save	0
Total CFP count = 8	71		
Number of Entries = Number of Reads = 2; Number of Writes = : Number of Exits = 0 'push': 79 'bl': 36 'pop': 64 'ldr': 256 'add': 152 'mov': 119 'cmp': 48 'bxeq': 30 'b': 12 'bx': 24 'sub': 64 'asrs': 6 'asrs': 6 'asrs': 12 'ldrb': 8 'popne': 7 'strb': 8 'str': 48 'mul': 10 'bne': 8 'popned': 19 'blx': 6	457 27 187 == uction type		
Plain Text 👻	Tab Width: 8 👻	Ln 1, Col 1	INS

Darwish and Soubra ©2020

Darwish and Soubra ©2020

- 1. **Motivate** our work, and choice of use case.
- Provide an overview about COSMIC and ARM.
- 3. Describe the **methodology**.
- 4. Showcase our **prototype**.
- 5. Conclude.

Conclusion

- Our goal in this work was to **map** an **assembly language's** computational model as comprehensively as possible to **COSMIC's terminology**, in order to measure programs in that language.
- We decided to choose **ARM** as the target language due to its **popularity** and **significant share** in the market.
- We implemented our mappings as a simple **prototype** that takes as input C program/ARM assembly program.
- Possible future work: 1. Applying our mapping to **other** assembly languages.

2. Studying how the size **changes** as a program is compiled.

Thank you!

Any Questions?

Reach out to us!

amfa.darwish.97@gmail.com

hassan.soubra@guc.edu.eg