

2 - 4 DE SEPTIEMBRE DE 2015 1^{ER} CONGRESO NACIONAL DE MEDICIÓN Y ESTIMACIÓN DE SOFTWARE

Functional Sizing in Brazil

Mauricio Aguiar

TI Métricas Rio de Janeiro, RJ Brazil

Agenda

- About TI Métricas
- A Short History of Software Measurement in Brazil
- Why Brazilian Organizations Use Functional Sizing
- How Brazilian Organizations Use Functional Sizing
- Benefits and Challenges

1er Congreso Nacional de Medición y Estimación de Software

About TI Métricas

Company Information

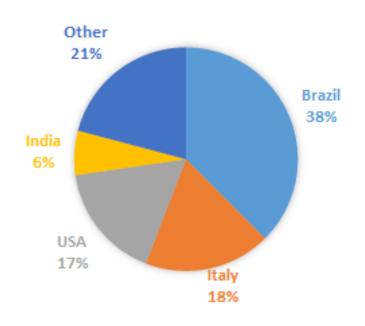
- Software Measurement Company
 - Based in Brazil (Rio, Sao Paulo, Brasilia & Porto Alegre)
 - Services:
 - Function Point Counting (main service)
 - Project Estimation (several methods, featuring COCOMO II)
 - Productivity & Benchmark Studies
 - PSM(*) Consulting and Training
 - FP Consulting and Training (IFPUG FP, SNAP, COSMIC FP)
 - Some Numbers:
 - 70+ employees (50+ IFPUG Certified)
 - Averages 70,000 FPs counted per month
 - Client Areas:
 - Government Finance & Banking Telecom
 - Insurance Airline Energy
 - Health

^(*) Practical Software & Systems Measurement www.metricas.com.br

Where We Are

- Rio
- São Paulo
- Brasília
- □ Porto Alegre

1er Congreso Nacional de Medición y Estimación de Software


A Short History of Software Measurement in Brazil

Brazil – #1 in IFPUG Members, CFPS & CSP

IFPUG MEMBERSHIP BY COUNTRY MAY 2015 - TOP 4

Brazil has **34%** of all CFPS/CFPP and **33%** of all CSP

Source: IFPUG office, May 2015

Brazil – COSMIC Certifications

Brazil has **26** COSMIC Certified Professionals

(12 from TI Métricas)

More to come!

Source: COSMIC website, August 2015

A Short History The First Wave

- 1989 First Brazilian company joins IFPUG (UNISYS)
- 1991 First Brazilian FPA User Conference
- 1992-1996 7 more user conferences
- 1996 First CFPS exam in Brazil (3 CFPS)

A Short History The Second Wave

- BFPUG founded in 1998
- Local CFPS exams from 2001 to 2007
- IN04 (Brazilian Government) in 2008
- Automated CFPS exams since 2008
- ISMA 5 in Brazil (São Paulo) in 2010
- Number of CFPS over 300 in 2012
- First COSMIC Exam 2012

A Short History The Second Wave

- ISMA 8 in Brazil (Rio) in 2013
- Second COSMIC Exam in 2013
- First SNAP Exam in 2013
- IN04 updated in 2014
- ISMA 11 in Brazil (Sao Paulo) in 2015

A Short History The Third Wave

- More organizations transition to functional sizing
- Several functional sizing methods coexist
- Non-functional measurement methods appear

A Short History

"Instrução Normativa 04/2014" - Main Points

- The company measuring the services cannot be the same company providing the services.
- Person-hours cannot be used to measure effort unless justified. Effort must be associated with products conforming to pre-defined quality and schedule criteria.
- Contracting job positions is not allowed.
- Electronic bidding used whenever possible.

In 2014, **90%** of all government agencies audited by the "Tribunal de Contas da União" made contract payments as a function of objective measurement of results.

1er Congreso Nacional de Medición y Estimación de Software

Why Brazilian Organizations Use Functional Sizing

Why Use Functional Sizing Who Controls Price

- All other factors assumed constant, price will be controlled by the:
 - Vendor
 - Process-oriented pricing "This costs a lot because it takes many hours to make"
 - Client
 - Results-oriented pricing "This costs a lot because of these valuable features"

Why Use Functional Sizing Clients Like to Be in Control

- Why does this software change cost so much?
 - Process-oriented perspective
 - "Because I will have to spend 2,000 person-hours on it"
 - Results-oriented perspective
 - "Because I will have to change 200 function points"

Why Use Functional Sizing Clients Get to Be in Control

- Functional sizing is results-oriented
- Functional sizing can be understood and verified by the client
- Functional size measures can be standardized
- Functional size measures can be benchmarked

1er Congreso Nacional de Medición y Estimación de Software

How Brazilian Organizations Use Functional Sizing

Types of Models

- Explanatory Models
 - Used to understand behavior
 - Mostly used by economists, researchers & social scientists
 - Example: modeling productivity as a function of several variables to guide process improvement initiatives

Types of Models

Predictive Models

- Used to predict future behavior
- Used by estimators
- Example: modeling effort as a function of size & productivity to obtain estimates

Types of Models

- Prescriptive Models
 - Used to regulate relationships
 - Used in business agreements
 - Example: Establishing productivity values for software development pricing; setting prices based on the value of a function point
 - These are <u>not</u> estimating models!

Types of Models Predictive x Prescriptive Models

Estimating (Predictive Model)	Pricing (Prescriptive Model)
1. Estimated value should be	1. Prescribed value should be
close to actual	close to actual
2. Method is expected to give	2. Method is expected to give
approximate results	exact results
3. Different estimators may	3. Different model operators
produce different values	must produce the same values
(depending on their expertise	
and skill)	
4. Input values do not need to	4. Input values must be
be objective – may depend on	objective – must not depend on
estimator's opinion/assessment	estimator's opinion/assessment

FP-based Business Models

- Business Model
 - A 'way of doing business'
- FP-Based Business Models used in Brazil
 - Estimating Models
 - Pricing Models

FP-based Business Models Estimating Models

Basic

Use FPs and a simple linear model to estimate effort

Parametric

- Use FPs as input to parametric models to estimate effort & schedule
 - COCOMO II, SEER, SLiM, etc.

Other

Any method that uses FP size as input to estimating

FP-based Business Models Pricing Models

- Productivity-based Model
 - Productivity measures the effort to develop a function point
 - Calculations:
 - Effort (H) = Size (FP) * Productivity (H/FP)
 - Price (\$) = Effort (H) * Hourly Rate (\$)

FP-based Business Models Pricing Models

- Price per Function Point Model
 - A specific price per function point is established for each project type
 - Price is computed as
 - Size (FP) * Unit FP Price (\$/FP)

FP-based Business Models Pricing Models

- Baseline-based Model
 - A specific price per function point per month is established for an installed application base
 - A fixed monthly fee is charged for a service set (e.g., application maintenance/support)

FP-based Business ModelsOther Models

- Defect-based Model
 - A price reduction (penalty) is associated with a defect threshold
 - The threshold is typically based on a defect density measure (e.g., defects per FP)

FP-based Business ModelsOther Models

- Negotiation-based Model
 - Client obtains a value from an estimation model
 - Client accepts supplier's bid if lower than estimated value;
 otherwise negotiation applies.

FP-based Business ModelsOther Models

- Phase-based Model
 - Not all organizations contract all project phases
 - Effort may be broken down by project phase
 - Phase percentages are typically based on historical data

1er Congreso Nacional de Medición y Estimación de Software

Benefits and Challenges of Using FP-based Business Models

Benefits & Challenges Benefits

- Improves current practice ('better than before')
- Drives productivity up
- Transparent
- Objective
- Standardized
- Can be benchmarked
- Supported by both not-for-profit & for-profit orgs
- Good for any technology/process

Benefits & Challenges Challenges

- Initial productivity determination (particularly if no data is available)
- Non-functional items (FPs may not be applicable)
- Requirements interpretation (fix poor requirements)
- Counting rules interpretation (certification helps)

Gracias!

info@metricas.com.br
http://www.metricas.com.br/downloads

